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Dirac Equation and the Ivanenko-Landau-K ihler 
Equation 
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We consider spinor theory within the framework of an inhomogeneous differen- 
tial forms formalism. We also consider the possibility of describing fermions 
with the Ivanenko-Landau-KShler  equation. The relations between these two 
equations are studied. 

1. INTRODUCTION 

The Dirac equation (Bade and Jehle, 1953) presents the well-known 
standard description of fermions, the half-integer-spin particles. Spinors 
which realize the double-valued representations of the orthogonal space- 
time symmetry group were introduced in the mathematical literature in 
1913 by Cartan (1913) and they later were rediscovered by Dirac (1928) in 
an attempt to understand the behavior of electrons in a magnetic field. The 
Dirac spinors are widely used in quantum field theory; however, these do 
not have a simple interpretation as geometrical objects. In particular, this 
fact leads to ambiguities in the definition of fermion fields on arbitrary 
topologically nontrivial manifolds: there exist nonequivalent recipes for 
introducing the spinor structure on curved space-time (Budinich and 
Trautman, 1988). In addition, it was noticed long ago (see, e.g., Zhel- 
norovich, 1982) that the Dirac equation is in fact equivalent to a system of 
nonlinear tensor equations. In the present paper we address another 
approach, and construct the spinor theory in terms of antisymmetric tensor 
fields (differential forms) and linear field equations. Such a reformulation 
of the theory of fermions within the geometrical framework of exterior 
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forms is of particular interest for the description of half-integer-spin fields 
on curved manifolds. 

It is less known that fermions can be described by inhomogeneous 
differential forms which satisfy the Ivanenko-Landau-K/ihler (ILK) 
equation. The latter has a long and dramatic history (see, e.g., Ivanenko 
and Landau, 1928; Kahler, 1962; Graf, 1978; Becher and Joos, 1983; Benn 
and Tucker, 1983; Ivanenko et al., 1985; Ivanenko and Obukhov, 1985; 
Leonovich, 1983; Plebanski, 1984; Budinich and Bugajska, 1985; and 
references therein). The ILK equation has not yet found wide application; 
however, it is worth mentioning its use in lattice models (Graf, 1978; 
G6ckeler and Joos, 1984) and in the description of generations (Banks et 
al., 1982). Of the most recent developments we would like to mention the 
ILK-based string models (Solodukhin, 1989, 1991) and its to some extent 
unexpected role in Witten's (1988) topological field theory, where the ILK 
equation describes the ghost sector of the model. 

Both the Dirac and ILK equations can be formulated in terms of 
exterior forms, so it seems interesting to investigate their possible relations. 
The point is central in the present paper. 

The paper is organized as follows. Section 2 contains a brief review 
of the ILK theory; several representations of the ILK equation are dis- 
cussed. 

In Section 3 we consider the theory of algebraic spinors within the 
framework of representations of the Clifford algebras. The spinor is defined 
as an element of the left minimal ideal of the Clifford algebra. 

Section 4 is devoted to the discussion of a somewhat different formula- 
tion of spinors which is equivalent, in flat Minkowski space-time, to the 
algebraic formulation. The problem of equivalence in Riemannian space- 
time is more complicated. The reduction of the Dirac equation in R 4 to the 
surface R 2 c R 4 is considered, showing the emergence of the ILK equation 
on the latter. 

The conjugation operations are studied in Section 5. We demonstrate 
that reduction of the Dirac equation not only induces on a two-surface the 
ILK equation, but also the conjugation law on it. 

In Section 6 we treat the ILK equation in M 4 as the result of reduction 
of the usual Dirac equation from the 8-dimensional space M s. It is shown 
that the conjugation of the ILK field as well as the internal (right) 
symmetry group are determined by the signature of the M 8 metric. The 
anomalous signature yields the noncompact symmetry group, which leads 
to complications with quantization of the ILK theory. 

Finally, Section 7 contains general discussion and the summary of the 
results obtained. 
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~O= 

The codifferential 6 
product of p-forms, 

2. T H E  I V A N E N K O - L A N D A U - K ~ H L E R  EQUATION 

Let  M 4 be the Minkowski space-time with the metric tensor 
t/~v = diag( + 1, - 1, - 1, - 1). Elements of the exterior form algebra 
A , (M 4) = ~)4= 0 AP(M4) are the nonhomogeneous exterior forms 

~= ^ " . .  ^ dxUp (2.1) 
1 

dx ~ , 
p o 

where {dx u} is the / - fo rm basis of the cotangent space T*(M4), dual to the 
coordinate basis {3 u }. In A*(M*) two differential operators are defined: 
exterior differential d and codifferential 6. For the p-form 

_ I  o dx u, A ' ' "  A dx"p q - p !  , , , p  

1 8  +t d O = - f i .  ~ ,G~. . .~ ,  d x " ,  ^ . . . ^ dx~ ,+~ 

1 
(p -- 1)! O'O'v'"uP - '  dxU' ^ " ' "  ^ &up- ,  

is adjoint to d with respect to the natural scalar 

M leo  

and it can be represented in the form b = , -1  d , ,  where ,: A P ~ A  *-p is the 
Hodge dualization operator. The evident properties are as follows 

d 2 =  0, 6 2 = 0  

(2.2) 
- ( d 6  + 6d) = [] = 8~0 ~' 

In 1928, independently of Dirac (1928), the relativistic wave equation 
was proposed by Ivanenko and Landau (1928) for the fields (2.1) which 
correctly describe the behavior of an electron in an external magnetic field. 
This equation, 

{i(d - 6) - m}~b = 0 (2.3) 

was rediscovered in 1960 by the mathematician Kfihler (1962) and is often 
called the Dirac-Kfihler equation. 

With the help of (2.2) one can easily see that, like the standard Dirac 
equation, equation (2.3) is the "square root" of the Kle in-Gordon equa- 
tion, 

(D + m2),~ =0  
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This similarity suggests deeper relations between the two equations. 
We shall study this aspect within the framework of the theory of the 
Clifford algebra representations. 

First, let us note that there exists a natural correspondence between 
exterior and Clifford algebras. Namely, one can explicitly construct the 
complex Clifford algebra CI,3(M 4) on the Minkowski spacetime with the 
metric signature (1, 3) by introducing the new algebraic operation in 
A*(M4): the Clifford product of exterior forms. For the basis/-forms d x  ~' 

the latter is defined by the formula 

d x  ~ v d x  v - d x  ~ A d x  v + tl ~ (2.4) 

Then an arbitrary complex nonhomogeneous form (2.1) may be 
expressed as an element of the Clifford algebra 

4 1 
~b = p ~ 0 ~ .  (~,ul...up d x  Itl v " ' v  d x  Itp (2.5) 

The algebra CI,3(M 4) is defined as the formal algebra with respect to the 
Clifford product v which is spanned by the basis elements, 

{1, d x  ~' . . . . .  d x  m v . .  �9 v d x  up . . . . .  d x  ~ v . . .  v d x  3} (2.6) 

constructed from the generating elements d x  ~' which in view of (2.4) satisfy 
the anticommutation relation 

d x  ~' v d x  ~ + d x  ~ v d x  I' = 2t/~Vl. (2.7) 

Clearly, the complex dimension of C~,3(M 4) coincides with that of 
A*(M 4) and is equal to 2 4= 16. 

With the help of (2.4) the ILK equation (2.3) is rewritten as 

( i  d x "  v O~ - m)~b = 0 (2.8) 

Equations (2.7) and (2.8) suggest the correspondence between d x  ~ and the 
Dirac matrices 7~, and between the Clifford product v and the usual 
matrix product. 

Indeed, let us consider a complex 4 x 4 matrix ~b (Becher and Joos, 
1983; Ivanenko and Obukhov, 1986; Ivanenko e t  al . ,  1985) 

4 1 
= p Z  o p-5 ~~ v u p  FUl""uP (2.9) 

The spin tensors 

F,  ~...~p = ?O, t"' Y'A' p = 0, 1, . . ., 4 

together with the unit matrix realize the basis of the 4-dimensional Dirac 



Dirac and lvanenko-Landau-K~.hler Equations 229 

algebra, defined by the relation 

Y,Y~ + YvY, = 2t/u~I 

The inverse transformation is 

1 
(PP v"up --'-- 4 ( - -  1 ) P ( r -  1)/2 Tr(@ F,,,..u,) (2.10) 

For complex conjugates, 

1 
~, 1-..,, = ~ Tr(~Tr~,..w) (2.11) 

where ~ = %0 +Y0, and we have used 7oY~- Y0 = Y,. When the tensors r 
satisfy (2.3) one obtains the equation for the matrix field 0 (Becher and 
Joos, 1983; Ivanenko and Obukhov, 1985; Ivanenko et al., 1985) 

(iy'Ou -- m)O = 0 (2.12) 

which resembles the Dirac equation, but unlike the latter, O is not a column 
but a 4 x 4 matrix. 

Under the Lorentz transformations 

xU-~x'~'= A ~" v x" 

q~/~l""~p ~ q~'Ul"',up = A ,  lvl  �9 . �9 Aupvp ~0 v~",p 

the field (2.9) transforms as follows: 

0 ~ 9 '  =SOS -~ (2.13) 

where the matrix S realizes the spinor representation of the Lorentz group 

S-1y~S = A u v y~ 

The Lorentz-invariant Lagrangian for the field @ has the form 

L = Tr { 2 (~,y~O -- ,'yuO~,~) + rn(~ } (2.14) 

Let us mention here that quantization of the ILK theory requires the 
indefinite metric in the Hilbert space, and this leads to some difficulties. 
Their source is the invarmnce of the theory under the noncompact internal 
("right") symmetry group SU(2, 2) (Benn and Tucker, 1983; Ivanenko and 
Obukhov, 1985; Ivanenko et aL, 1985), evident from (2.14). The type of 
quantization is then an open problem; both the Fermi-Dirac (Benn and 
Tucker, 1983; Ivanenko and Obukhov, 1985; Ivanenko et al., 1985) and the 
Bose-Einstein (Leonovich, 1983; Plebanski, 1984; Satikov and Stragev, 
1987) approaches have been developed. 
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The ILK equation has several useful representations (Ivanenko e t  aL ,  

1985). Besides the ones mentioned above, let us describe one more. Let us 
introduce a 16-component column ~bA,A = 1 . . . . .  16, the elements of 
which are ~O U and the index A is understood as the pair ( i , j ) .  Define the 
16 x 16 matrices F u which satisfy 

by the expression 

FuF ~ + F~ F,  = 2quvI 

(Fu)AA,  = (Tu)ii,O2i, 

where A = (i, j) ,  A'  = (i', j ').  
Then the ILK equation (2.3), (2.12) is transformed to the form 

iF~sOu~k s - m~k~ = 0 (2.15) 

3. THE CLIFFORD ALGEBRA AND ALGEBRAIC SPINORS 

Let us consider now the theory of spinors in M 4 within the framework 
of the Clifford algebra representations. It will be more convenient to work 
with the real Clifford algebras. 

Let N 4 be the 4-dimensional space with the metric q,v = 
diag( + 1 , -  1 , -  1 , -  1). We will assume this is different from the Min- 
kowski spacetime M 4. Denote the orthonormal basis in N 4 by elements 
{e,,/~ = 0, 1, 2, 3}. The real Clifford algebra RI,3(N 4) of the space N 4 is 
defined as the algebra spanned on 

{1, e u , . . . ,  e~l . . . . .  eup . . . . .  eoele2e3} (3.1) 

/~l </t2 < " ' < / ~ p , p  = 0, 1 , . . . ,  4, which are constructed with the help of 
the algebraic operation defined on the basis as 

e~ev + e~e u = 2rlu~ (3.2) 

An element Y ~ R1,3(N 4) has the form 

4 1 
Y =  S" __ y ~ u p  (3.3) p ~ o  P!  e u ~ . . . e~,p 

where yUl...~p are completely antisymmetric real tensors. 
Now let N 5 be the real 5-dimensional vector space with the metric 

~ = ( + 1 ,  - 1 ,  - 1 ,  - 1 ,  +1)  and let ~ ,  ~ =0 ,  1 . . . . .  4, denote an or- 
thonormal basis in N s. We embed N 5 in such a way that the basis e u 

coincides with the first four vectors of ~ .  The real Clifford algebra 
R2,3(N5), related to N s, is easily seen to be isomorphic to the direct sum 
R2,3 ~ RI,3 (~ RI,3. 
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Indeed, let us denote 

i = ~ . . . . .  (3.4) - e0el e2e3e4 = - - e o e l  e2e384 

Clearly, i belongs to the center of R2,3, i.e., i~  = #~i. One checks at once 
that i 2 = - 1. Hence, the maximal element (3.4) plays in R2, 3 the role of  the 
imaginary unit. 

An element i? ~ R2,3(N 5) can be represented in the form 

1 
17= E ~ Y ~ ,, e=~ . . . e% = Y + i~ (3.5) 

p = O F "  

where Y is given by (3.3) with y~,r..,, = 33~,r",: and 

4 1 
W =  E - - t p " , " , e , ~ . . . e ~ p  

p=0P! 

where 

( - -  1)p( p - 1)/2 
- E"~'-%r"~5-~-P~I'"~5- 

~/"'" (5 -p)! 

The Levi-Civita symbol in N 5 is such that go1234- +1.  Thus an 
element of  R2,3(N 5) can be represented as the formal sum (3.5) in which the 
"imaginary" and "real" parts Y, ff are the elements of  Rx.3(N4). In other 
words, we have shown that R2,3 (N s) = CL3 (N4). 

Let A be the Clifford algebra. A subset S ~ A is called a left ideal if 
as ~ S holds for any a ~ A, s e S. The left ideal is called minimal when it 
does not contain nontriviat left ideals. One can obtain a left ideal with the 
help of the idempotent element P ~ A, such that p 2 =  p. Then S = AP.  
One calls two idempotents "orthonormal" if P P ' =  P ' P  = 0. Finally, an 
idempotent is called primitive if it is impossible to decompose it into the 
sum of two orthonormal idempotents. To any primitive idempotent there 
corresponds a minimal left ideal. In the Clifford algebra one can construct 
the complete set of  primitive idempotents {Pi} such that 

P~P/ = O, i ~ j 

PiPi = ei  (no sum) (3.6) 

~ P i =  1 
i 

Then A may be decomposed into the sum of minimal left ideals 

A = ~ Si, Si = APi ( 3 . 7 )  
t 
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The left multiplication evidently defines a linear representation of  the 
Clifford algebra A on minimal left ideals, 

A • 

a eA,  s e S i ~ a s  eSi  

By construction these representations are irreducible. 
Notice that with the help of  an arbitrary inversible element u e A one 

can obtain from {P,.} another complete set of primitive idempotents 
P~ = uPiu-~ which satisfy (3.6). Moreover, there always exists an element 
u 0 such that Pi = uijPju~ 1. Hence all the representations of  the Clifford 
algebra on the minimal left ideals are equivalent. 

One can prove (Lounesto, 1986) that in a real algebra Rp,q there are 
k = q - z(q - p) mutually commuting elements 21 . . . . .  )~k with unit square 
212 . . . . .  2~ = 1. Here z(n) is the Radon-Hurwi tz  number, which for any 
n ~ Z is determined by the recursion formula z(n + 8 ) =  z ( n ) +  4, and 
r(0) = 0, z(1) = 1, z(2) = r(3) = 2, z(4) . . . . .  z(7) = 3. Clearly 

1 
P~aa ~-. ~ (1-q- ~a~a), ~,a = "~- I 

are idempotents, and 

e, = e l i .  p;2  . . . .  , i , ?  ( 3 . 8 )  

are primitive idempotents. The total number of  these is equal to 2k-- the  
number of different combinations of sign coefficients {51 . . . . .  ~k }. For  the 
case under consideration, R2,3 (NS), k = 2 and hence there exist four primi- 
tive idempotents. 

As two independent commuting elements we can choose 21 = ie3, 
22 = ie~e2. Clearly 212, 2 = 2221, )~ = J,~ = 1. Then the complete set (3.8) is 
as follows: 

1 1 
P~=~(l+ie3)( l+ie lez) ,  P2=~(1- ie3 ) ( l+ ie le2 )  

1 1 
P3=~( l  +ie3)(1-iele2), P4=-~(1- ie3)(1- ie le2)  

(3.9) 

Let us describe the minimal left ideals which correspond to (3.9). 
Consider the action of  Pi, i = 1 . . . .  ,4,  from the right on an arbitrary 
element I ~ ~ R2,3(NS). Taking the latter in the form (3.5), one gets 

Y(o = YPi ~ S i  = R2,3ei 
(3.10) 



Dirac and Ivanenko-Landau-KibJer Equations 233 

where ~ i )  are "complex" coefficients constructed from the components of 
(3.5). 

In the ith minimal ideal the elements 

1Pi, eoel P,  eoPi, el Pi (3.11) 

can be considered as the basis of the four-dimensional complex linear space 
Si. Correspondingly, the quantities ~'~0 are naturally interpreted as the 
components of elements Y(o in S~ with respect to the basis (3.11). We call 
any of equivalent ideals Si the spinor space S. Its complex dimension is 
equal to 2 4/2= 4. The above construction is well known as "algebraic 
spinors." Equations (3.10), (3.11) show that S is isomorphic to the complex 
Clifford algebra C1.1 of a two-dimensional space (spanned by the vectors 
e0, el). This fact is a particular case of the general theory of the Clifford 
algebra representations where the spinor representations of C2m are realized 
on Cm (Rashevsky, 1955; Chevalley, 1954). We will use this below. 

The components of an element of spinor space (of spinor) may be 
conveniently arranged on a column 

= /03/)I (3.12) 
log,>| 
L~'1oj 

Here the index (i) denotes the minimal left ideals to which the given spinor 
belongs. 

Acting from the left by the elements ~ on the basis (3.11), one finds 
that the vectors ~ ,  # = 0, 1, 2, 3, and 24 are represented by 4 x 4 matrices 

0 0 (3.13a) 
e~ E~  1 0 0 

0 1 

Io~ ~ 1 (3.13b) 
~" e'= - 1  0 

1 0 

[o/~ ~ 1 - i  (3.13c) 
~2: Jr = + - i  0 

0 
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I~ ~ 1 e3: E3=--- i 0 (3.13d) 

0 i 

84:/~4 = i/~5 = iJ~0J~lJ~2E3 (3.13e) 

The signs in (3.13c) and (3.13d) depend on the choice of the minimal left 
ideals: in (3.13c) for S, and $2 one must take (+) ,  while for $3 and $4 ( - ) ;  
in (3.13d) ( + )  is for S,, $3 and ( - )  for $2,$4. 

The matrices (3.13) satisfy 

s  +/~a/~= = 20,a (3.14) 

and these are a possible set of Dirac matrices. 
Thus the action of an element of the Clifford algebra (3.5) on spinors 

(3.12) in the given basis (3.11) is represented simply as the matrix multipli- 
cation from the left by the 4 x 4 matrix Y which is determined from (3.5) 
by substituting ~= by J~=, _(3.13). Hence the representation of the algebra 
RI,3(N a) = R2.a(N 5) [put ~k = 0 in (3.5)] is defined on Si. 

This also gives the spinor representation of the orthogonal group on 
Si. To show this let us consider the subset of invertible elements Y in R,,3. 
These define an internal automorphism of the Clifford algebra 

R , ,  3 ~ YR1, 3 Y - '  

By construction, the Minkowski space N 4 is embedded in R,,3(N 4) as the 
set of elements of the form X = x~e~,. The Clifford group Gc(N 4) of the 
space N 4 is the set of invertible elements in R,,3 such that the relevant 
automorphisms leave N4c RI,3(N 4) invariant, i.e., 

Gc(N 4) = {Y e R , , 3 ( N a ) I y x Y  - '  e N 4, VX = x~'e~, e N 4} 

In particular, for Y e Gc(N4), one finds 

yei, y - ,  = A / e v  (3.15) 

Squaring (3.15), we get 

Ye~,e~ Y - '  = A~, ~ A~ p e~ea 

and for the symmetric part 

r/j,~ = A~ ~ A~ ~ r/~ 

Thus, A / e  O(1,3), and (3.15) describes the homomorphisms of the 
Clifford group in the orthogonal group. This map is not one-to-one, since 
for any element aY, a e R, in (3.15) there corresponds the same A, ~. Hence 
one uses the normalization condition. 
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In R1,3(N 4) involutions are defined: the main involution a which maps 
(3.3) into 

~ ( y ) =  ~ 1 
p = 0 F  ( - t)Ptl~'~"~"eu'"" eup (3.16) 

and the main anti-involution fl, 

f l (V)= p=oP.i l ( -1)P(P-n/Et l~ 'r 'eu~ . . . e,,  (3.17) 

with the properties 

~2 = fl2 = ia, 

cffab) = e(a)oc(b), 

0~(Y-1) = (~(y)) -1 

f l ( r -  ') = (fl(r))  - '  

fl(ab) = fl(b)fl(a), a, b ~ R1,3 

Applying fl to (3.15), one gets 

fl( Y) -~e~,fl(Y) = a~vfl(ev) 

Subtracting (3.15) from this, we obtain 

fl( Y) Ire. = e.fl( Y) Y 

Thus f l (Y)Y is a scalar. 
The set 

Pin(U 4) = { Y ~ Gc(U 4) [fl(Y) Y = 1 } (3.18) 

is called the spinor group. Equation (3.15) gives the homomorphism 

Pin(N 4) ~ O( 1, 3) 

This map is two-to-one: any rotation Au v corresponds to the two elements 
_+ Y of the spinor group. The subset of even elements in Pin(N 4) forms the 
subgroup which is called the special spinor group, 

Spin(N 4) = { Y ~ Pin(U 4) Is(Y) = Y} 

In this case det A,V= 4-1, and (3.15) gives the homomorphism 

Spin(N 4) --* SO( 1, 3) 

Thus, we obtain finally the representation of the Lorentz group on the 
spinor space which is related via the elements of Spin(N 4) c R1,3(N4). For 
example, the infinitesimal rotation 

A~ v = 6~ ~ + c% v, ~u~ = -c~ 
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yields via (3.15) 
1 

Y = 1 + ~ c%veUe v 

The relevant matrix realization on the spinor space is given by the 4 x 4 
matrix 

1 
Y = 1 + ~ ~o~vJ~J~ v 

where/~" is as in (3.13). 
Returning now to the ILK equation (2.3), (2.8), we note that the field 

(2.5) gives a concrete realization of (3.5), while the abstract space N 4 can 
be idempotent identified with M 4, and e ~ with dx  ~. Then decomposing ~b, 
(2.5), into the sum of four spinor fields ~b<i) = ~bPi and substituting into 
(2.8), we obtain four independent spinor equations 

(i dx  ~ v a n - rn)~b~o = 0, i = 1 , . . . ,  4 (3.19) 

In the matrix form (3.19) in the basis (3.11) one gets 

(i/~Ou - m)~kr = 0 (3.20) 

that is, the ILK equation is reduced to the four independent Dirac 
equations for the spinor belonging to different minimal left ideals. For- 
mally, this was apparent already in (2.12). 

We conclude the section with the remark that in general �9 might not 
be decomposable into elementary spinors, since arbitrary spacetimes do not 
admit covariantly constant idempotents (Graf, 1978; Benn et al., 1985). 

4. REDUCTION OF THE DIRAC EQUATION 

Let us now address the problem of reduction of the Dirac equation 
from the four-dimensional space to its two-dimensional submanifold. We 
shall discuss this point within the framework of the approach of Rashevsky 
(1955), which establishes a natural connection between spinors and differ- 
ential forms. 

As mentioned above, the spinor space is a minimal left ideal of the 
Clifford algebra, and it is isomorphic to the complex Clifford algebra CI,~ 
of an auxiliary two-dimensional space (spanned by the vectors e o and e~ in 
the case under consideration). 

So, let us consider nonhomogeneous exterior forms 

2 1 
= ~ -~. cpav..ake al A ' ' "  A e ak (4.1) 

k = 0  �9 

which in terms of Rashevsky (1955) will be called spinors. The set of such 
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forms will be called the spinor space hereafter. An orthonormal 1-form 
basis in the Minkowski space M 4 is denoted {eA, A = 0, 1, 2, 3}. Its choice 
is not connected with the introduction of some coordinates in M 4, and 
hence an element (4.1) is [like the element (2.1)] invariant, independent of 
spacetime coordinates. 

We now describe the action of the orthonormal group of M 4 on the 
spinor space. Following Rashevsky (1955), we notice that each 1-form 
ea, A = 0 ,  1, 2, 3, determines a linear operator EA which acts on the 
elements (4.1) according to the rules 

e~.i=0,1: Ei~b=e i v 0  

e2: E2O = i=(O) v e 1 (4.2) 

e 2 : E 3 ~ / / =  ~ ( ~ )  v e 0 

where e is the main involution (3.16). 
These operators satisfy 

EaEB + EBEa = D/an 

and they are evidently in correspondence with the above operators {/~, }, 
(3.13), which act on the space of algebraic spinors. Hence, just as before, 
we can define the action of  the orthogonal group on (4.1) by (substituting 
ea --+ Ea) mapping, say, the infinitesimal rotation (3.15), Y = 1 + �88 a, 
to the operator Y = 1 + lco=aE=Ee. In this way we naturally introduce the 
action of the spinor group (Pin and Spin) on the spinor space (4.1). 

Now we are in the position to write the Dirac equation, 

iEa~a~ - rn~ = 0 (4.3) 

Here {OeA } is the vector basis dual to {ea }. 
Let us fix in the Minkowski space-time n 4 a n  orthogonal coordinate 

system (x~ x2, x 3) and consider the two-dimensional plane M 2 =  
{(X 0, X 1 , X 2, X 3) t~ M4Ix 2 = x 3 = 0} .  Then we can put e ~ = dx ~ e 1 = dx 1 in 
(4.1)-(4.3) (the vectors O/Ox ~ and a/Ox ~ are tangent to M2). We are 
interested now in the restriction of  the Dirac equation (4.3) on the plane 
M 2. For this purpose we choose for the spinor field ~ components in the 
neighborhood of M 2 the natural ansatz 

O r ( x ~  x 3) = ~ ' (x  ~ x ' )  + cl,  X x  ~ x ' ) x " x  v + . . .  

That is, one has O,0il,~ M2 = 0, # = 2, 3, in this case. 
Hence, on the plane M 2 the Dirac equation (4.3) reduces to 

c~x ~ - m  0 0 
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or, using (4.2), 

i d x "  v -~x~--  m 0 = 0  

This is equivalent to the ILK equation on M 2, 

{ i ( d  - 5) - m}~k = 0 

It would be interesting to generalize such a construction to the case of 
an arbitrary (not necessarily fiat) two-dimensional surface R Z c  R 4. In 
order to study this problem we need the description of the spinor space and 
the relevant Dirac equation on a Riemannian manifold R 4. 

Let {ea, A = 0, 1, 2, 3} be a local orthonormal basis o n  R 4 with the 
metric g ( e a ,  e s )  = ~IAB. As above, we define the spinor space in R 4 as the 
set of forms (4.1). Assuming R 4 is supplied with the zero-torsion metric 
connection, one introduces covariant derivatives, 

Ve A = de a + coaB ^ e B = 0 
(4.4) 

V~pa ~ P a  s = --  (D A,o~OB 

where 0)As = ~0AB,~ d x "  is the Lorentz connection 1-form. 
It is useful to notice that the spinor ~h is in fact an element (2.1) where 

all components which involve the indices (2) and (3) are zero. Hence for 
the covariant derivative of the form ~b, considered as the geometrical object 
in R 4, we have 

a "^ e a - l ' '  a A e  b) 

--  (~ca.~qgcea + OgCa,~,q~cb ea A e b + 09cb,~tpace a ^ e b (4.5) 

where the indices a, b, c run from 0 to 1. One easily sees that the two last 
terms in (4.5) are zero, hence 

V ~ I  = 0 ~ 1  - -  (Oab,~tpa eb (4.6) 

and ~ ,  denotes the first three terms in (4.5). 
Notice that V ~  also belongs to the spinor space, i.e., it has the form 

(4.1). So one can generalize the Dirac equation (4.3) to the Riemannian 
case as follows: 

i E A h ~  V~Ak --  m e  = 0 (4.7) 

where E A are the Dirac operators (4.2) and h~ is the orthonormal basis 
(tetrad) field, e A = hA d x  ~. Such a curved-space Dirac equation is different 
from the standard one (Fock and Ivanenko, 1929; Penrose and Rindler, 
1986). 

Let us now consider the curved two-dimensional surface R 2 in R 4, 
which in local coordinates is defined by RE={(X~ x2, x 3 ) ~ R  41 
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x 2 = x 3 = 0}. We assume that e ~ and e 1 are tangent to R 2, i.e., e ~ = h ~ d # ,  
e I =h~  dxq To study the restriction of  (4.7) on R 2 it is convenient to 
choose the ansatz for the components of  spinor field ~ in the neighborhood 
of  R 2 in the form 

qa(x~ x 3) = tp(x ~ x 1) + auv(x ~ xl )x1 'x  ~ + . . .  

q~ol (x~ . . .  , x3) = ~~ ( x~ x l )  + b#~( x~  x l )  x~x~ + " "  (4.8) 

. . .  o )  ~ t x  o x l ) q M x ~  + .  . . ~94( xO, , X3) = (~a( xO, x l )  -1- a,u'~ , 

where the dots denote higher orders in x 2 and x 3. In this case (4.4)-(4.6) 
yield 

V,~,lx~ R2 = 0, /~ = 2 , 3  (4.9) 

Hence, (4.7) induces on R 2 the equation 

(iE"h~aV~ - m)O = 0 (4.10) 

o r  

( ie ~ v Va - m ) ~  = 0 

which is equivalent to the ILK equation on R 2. 
As a remark, let us point out that the spinor space (4.1) may be 

connected with a given pair of vectors {ea}, but the reduction can be 
constructed with respect to a surface R 2 with tangent vectors {ga} which 
are different from {e"}. In this case the result will be the same in view of 
the invariance of  (4.7) under the orthogonal rotations of  the basis 
e"---> V e a V - k  

For comparison one can consider the standard Dirac equation in the 
Riemannian space (Penrose and Rindler, 1986). Defining the spinor con- 
nection as usual, 

S 
V=~b = ~3~0 + r~ 0 (4.11) 

__ 1 ... I~A I~,B with F~ -Z~-As ,~  ~ , one finds that the Dirac equation reads 
S 

iEah]  V~Ak - m~b = 0 (4.12) 

In the neighborhood of R 2 the spinor components ~,i are assumed to 
be as follows: 

@i(xO . . . . .  X 3) = Oi(x O, X 1) - -  F / z j ( X  0, xl)~lJ(x O, X l )X"  " ~ ' ' "  (4.13) 

where Fu~ is the matrix of the spinor connection. Hence 

V,~b[x~R2 = 0 , # = 2 , 3  
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and the reduction of (4.12) on R 2 yields 
S 

( i E a h ~ V i  - m)~b = 0 (4.14) 

For the connection (4.6) we have evidently 

Vi~, = t3iO + S~ v ~ - ~b v Si (4.15) 

where S~ 1 e b. = "~O.)ab , ie a A 

One can see that equation (4.14) contains terms which depend on Ognm.~ 
and o~an,i, n, m = 2, 3, and the latter are determined not only by the 
geometry of R 2, but also by the embedding of R 2 into R 4. Clearly, when 
the four-dimensional space has the direct product structure R 4= R2t~/~2 
these terms are zero, and the induced equation on R 2 reads 

i ( d  - 6)~k + ie ~ v ~k v S a - -  m~b = 0 (4.16) 

This coincides with the modified ILK equation suggested by Benn and 
Tucker (1985; Bullinaria, 1986), which admits decomposition into the 
algebraic spinors. 

Finally, one more remark is in order. As one knows (Graf, 1978; Benn 
e t  al . ,  1985; Bullinaria, 1986), in general the field (2.1) cannot be decom- 
posed on algebraic spinors in such a way that the ILK equation (2.3) splits 
into several independent Dirac equations, because an arbitrary manifold 
does not admit covariantly constant idempotent fields, i.e., in general 
V~(~b v Pi) ~ Se. Hence, algebraic spinors do not always exist. 

However, the spinor (4.1) considered above is not an algebraic spinor, 
although relevant spinor spaces are isomorphic in the Minkowski space. 
As we noticed, the natural covariant derivative V~Ak is again the element of 

s 
the form (4.1); the standard covariant derivative V~ also has this 

s 
property, i.e., V,~b ~ S. 

We have thus described a new nonequivalent method of introducing 
spinors on a Riemannian space. Spinors are then analogous to the usual 
tensor objects. 

5. CONJUGATED SPINORS 

One needs the conjugation operation in the spinor space. Let us recall 
that the metric signature in M 4 is ( +  1, - 1 ,  - 1 ,  - 1 ) .  

For any two nonhomogeneous exterior forms 

= f  + foe ~ + A e  I + fole~ 
(5.1) 

q~ = ~0 -k- q~0 e~ + ~01 e l  + ~Oole~ 1 
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the scalar product is defined (Bullinaria, 1986) 

=f(f  +foCpo-f,(o,-{-fOl (PO1) * 1 

which has the properties 

<~,, 4,> = <4,, ~> 

<~, 4,> = <~(4,), ~(r 

<~', 4' > = <b'(4,),/~(~) > 

One easily sees that 
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(5.2) 

<r 4,> = (/~(q,), 4,) (5.3) 

where ( . ,  .) is the natural scalar product of p-forms, 

(~b (p), 4,(P)) = f ,  if(P) A 4,(P~ (5.4) 

Let us define the Hermitian conjugated spinor 

~k + = eofl(~b*)eo = f + f o  eo - f l  e I +fole ~ (5.5) 

and the Hermitian product 

<~+, 4,) = f(fq~ +foq~o +f ,  qh +fro qM) * 1 (5.6) 

As usual, the conjugated operator is given by 

(ff +, A4,)* = <4, +, A+ff)  (5.7) 

Then for the operators (4.2) one finds 

EJ- = Eo; E + = --El 
(5.8) 

E + = - E : ;  E + = -E3  

The Dirac conjugated spinor ~ = ~/, +/~ must satisfy 

<qg, E~4,>* = <& E~@> 

from which E~ = EE + E under the condition of hermiticity of E. The latter 
can be chosen as follows, E = Eo: 

~7 = ~ +J~o = eofl(@*) (5.9) 

Then the conjugated spinor satisfies the equation 

iO=~R" + m~ = 0 (5.10) 
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and it is transformed with the help of the inverse matrix under the spinor 
Lorentz transformations in spinor space. For example, in the infinitesimal 
case 

(5.11) 
= s 0  = 1 - �89 = 

Now one can easily determine the Dirac action 

i i < ~ / ~ ,  ~k> - m < ~ ,  ~b> (5.12) I =  5 <,E E % 0  > - 

Restriction to the two-dimensional plane M 2 reduces (5.12) to 

I= i  ~,  fl(~)^ (d -3)~b - m ~ ,  fl(~7) ̂  I// (5.13) 

Thus, the reduction induces on the 2D surface not only the equation 
of motion, but the conjugation recipe as well. In the present case (5.9) 
yields ( = ~b + v eo. 

Let us note that the conjugation law depends on the signature of  the 
4-dimensional space. For example, suppose we start from a different one, 
the metric of which has the signature ( + 1, - 1, + 1, - 1). Then 

Eo~k = e0 v ~k, E25 = r  r e 0  
(5.14) 

El ~' = el v ~/, E3~b = ia(~,) v e, 

and for the operators which are conjugate with respect to the scalar 
product (5.6) one finds 

Eo + = Eo, E, + = --El 
(5.15) 

E~- = 22, E~- = - E3 

The condition E~ = EE + E then yields that E = EoE2 and hence the Dirac 
conjugated spinor reads now 

~7 = ~b + g  = e0$ +eo = fl(~k*) (5.16) 

The observed difference is rather essential: while in the first case the 
charge <ff, eo$> is a positive-definite quantity, it is indefinite for an 
anomalous signature. We discuss this in the next section. 

6. R E M A R K S  A B O U T  T H E  ILK E Q U A T I O N  IN M 4 

The relation between the Dirac and ILK equations established above 
in fiat space is in fact quite universal. Not entering into the details of  
describing the reduction to a nonflat surface, one may say that the ILK 
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equation in M n is obtained from the restriction of  the Dirac equation in 
M 2n on the subspace M "  c M 2". In particular, the ILK equation in M 4 can 

be considered as the reduction of  the Dirac equation from the 8-dimen- 
sional space. 

Let us discuss such a construction. Let ~o be the Dirac spinor in M 8 
with the metric of  signature (1, 7). It satisfies the Dirac equation 

7 
iF"O,~o-mq~ = 0  (6.1) 

a = 0  

where the 8-dimensional F-matrices 

Fa~b -k- FbF a = 2q ab 

can be chosen in the form 

FU= 1 |  ~ , # = 0  . . . . .  3 

F 4 = 7~174  5 (6.2) 

F 4 + j =  /~j| ~5, j = 1, 2, 3 

One easily verifies that 

FoF+Fo = Fa (6.3) 

where F0 = 1 | 70. 
Hence the conjugated spinor is defined as 

~b = q~ +Fo (6.4) 

and the Dirac Lagrangian reads 

L = i~FaOa~O - -  m ~ q 9  (6 .5 )  

Reduction to M a c  M 8 gives the equation 

3 
Y. i r ~ , ~ o  - mq~ = 0 (6.6) 

,u=0 

which is evidently the ILK equation written in the form (2.15). 
Alternatively, (6.6) may be easily rewritten in the form (2.12) for the 

4 x 4 matrix field ~: 

i y ~ b  - m~ = 0 

with the Lagrangian similar to (2.14): 

L = i Tr((TuSur - m Tr(~qJ) (6.7) 

where, however, now ~Y = r 
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The Lagrangian (6.7), unlike (2.14), describes the ILK equation with 
the compact internal symmetry group SU(4). Now we can explain the 
origin of the noncompact symmetry in (2.14): it arises from the reduction 
from a space with anomalous signature (4, 4). 

Indeed, in such a case the F matrices read 

F f ' = l |  ~, / ~ = 0 , . . . , 3  
(6.8) 

and consequently the Dirac conjugation matrix C is as follows: 

C F + C  = Fa, C = Yo| (6.9) 

Then the 8-dimensional conjugated spinor is defined by 

= tp +C (6.10) 

and hence on M 4 the induced Lagrangian takes the form (2.14), 

L = i T r ( ~ y ~ )  - m Tr(~k) (6.11) 

where ~ = yo~k +7o. 
In summary, the conjugation law for the ILK field and consequently 

the internal ("right") symmetry group of the ILK theory are determined by 
the signature of the metric of the 8-dimensional space M s. The noncompact 
symmetry group arises when M 8 has more than one timelike coordinate. 
This is apparently an unphysical situation, which probably sheds light on 
the difficulties of quantization of the ILK field discovered earlier (Benn and 
Tucker, 1983; Ivanenko et al., 1985; Ivanenko and Obukhov, 1985; 
Leonovich, 1983; Satikov and Stragev, 1987). 

7. CONCLUSION 

We have shown that the nonhomogeneous differential forms suggest a 
new framework in which one can construct a natural theory of spinors. The 
spinor turns out to be a "two-dimensional" object, in the sense that it is 
related to a two-dimensional space (plane, determined by a pair of tangent 
vectors). Hence it is not very unexpected to find that the reduction of the 
Dirac equation to this two-space induces the ILK equation on it. This is a 
general property which naturally relates the ILK equation on M n with the 
Dirac equation in M 2n. As a by-product we have revealed the origin of the 
difficulties in the quantization of the ILK field in Mn: these arise when M 2n 
possesses several timelike coordinates. In summary, an interesting hierarchy 
of  the ILK-Di rac  relations can be established: the ILK equation in M 2n is 
equivalent to 22n- 1 Dirac equations each of which under the reduction to 
M 2n- ~ c M 2n yields an ILK equation, etc. 
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